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ABSTRACT

Using closed-form equations for the field distribution of
the eigenmodes in ridge waveguides, this paper presents a
simplified analysis for ridge waveguide E-plane discontinui-
ties. The accuracy of the calculated results is checked by
comparison with experimental resuits. Closed-form equations
are also presented for the field distribution of the dominant
hybrid mode in unilateral finlines.

I.INTRODUCTION

Recently, two rigorous approaches have been reported
for the characterization of ridge waveguide E-plane discon-
tinuities [1], [2]. The first one [1] uses the spectral domain
technique and has the advantage of high numerical efficiency.
It is however, limited only to structures with infinitely thin
ridges. The second approach (2|, applies the mode matching
technique and requires the determination of the field distri-
bution of the ridge waveguide eigenmodes. In this approach
[2], however, the field distribution of the TE and TM modes
in the ridge waveguide is obtained by following the conven-
tional method of solving the boundary value problem first for
the eigenvalue (the propagation constant), then for the asso-
ciated eigenvector. Besides its complexity, the computational
effort involved in this approach is extremely large.

On the other hand, approximate closed-form equations
for the field distribution of the TE modes ridge
waveguides have been reported in {3]. These equations have
been also used with the variational technique in [4] to
analyze slot resonators. However, due to the coupling
between TE and TM modes, formulation of the scattering
matrix of the ridge waveguide discontinuity requires the
knowledge of the field distribution of both TE and TM
modes.

in

In this paper, we present closed-form equations for the
field distribution of the TM modes in ridge waveguides. The
closed-form equations for both TE and TM modes are then
used with the conservation of complex power technique (5] to
provide an efficient analysis of ridge waveguide E-plane
discontinuities. The validity of this analysis is verified by
comparing our results with published results as well as exper-
imental results.
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Although numerous closed-form equations have been
reported in the literature [6], for calculating the propagation
constant in finlines, no paper has appeared for quick and
easy evaluation of the field distribution. In this paper, we
also present closed-form equations for the field distribution
for the dominant mode in unilateral finlines. In addition, to
the practical usefulness of these equations in the design of
non-reciprocal finline components [7], these equations can be
also used to derive a closed-form expression for the charac-
teristic impedance.

II. ANALYSIS OF E-PLANE
RIDGE WAVEGUIDE DISCONTINUITIES

Consider the ridge waveguide discontinuity shown in
Fig. 1. This discontinuity represents the basic building block
in the design of many microwave and millimeter-wave com-
ponents such as matching transformers and evanascent mode
filters. The major complexity in formulating the scattering
matrix of this discontinuity is in determining the field distri-
bution of the eigenmodes in the ridge waveguide region. The
propagation constants of the eigenmodes in ridge waveguides
are related to the cutoff frequencies which can be easily cal-
culated according to [5|. With the assumption of a single
term in the ridge gap (region II) of Fig. 2, and N expansion
terms in the trough region (region I), the field distribution of
the TE and TM modes can be written as:
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Fig. 1 Ridge waveguide E-plane discontinuity
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Fig. 2 Ridge waveguide with magnetic wall symmetry

Equations (1} and (2) not only give the field distribution
of the dominant TE mode and dominant TM mode but also
can be used to represent that of the higher order modes. The
conservation of complex power technique reported in [5} can
then be employed to evaluate the scattering matrix of the
E-plane ridge waveguide discontinuity.

In order to check the validity of this analysis, we com-
pare in Fig. 3 our results with those reported in (1] using the
spectral domain technique . A good agreement is observed.
Fig. 4 shows also a comparison between our results and
experimental results for a structure with a ridge of finite
metalization thickness. It is noted that there is a good agree-
ment between the computed and the experimental results.

In contrast to the variational technique used in (7], the
effect of the higher order mode coupling can be taken into
account in the present analysis. This in turn allows cascaded
discontinuities to be accurately analyzed. Fig. 5 shows the
transmission coefficient of two E-plane discontinuities con-
nected in cascade. It is observed that the calculated results
agree well with the measured results.



I0. FIELD DESCRIPTION IN UNILATERAL FINLINES

Due to the hybrid nature of the electromagnetic field in
unilateral finlines, the field distribution is expressed as a
summation of LSE and LSM modes. With the propagation
constant calculated using the closed form expressions given
in 6], and with the assumption of a constant field in the
fingap and (N LSE modes + N LSM modes) in regions I, II
and III of Fig. 6, the field distribution of the dominant mode
can be approximated as follows:
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Having obtained the E and H field components, the
characteristic impedance can be easily evaluated. In Fig. 7
we compare the characteristic impedance calculated using
equation (3) and (4) with those reported in [9] using the spec-
tral domain technique { in [9] a constant field is also assumed
in the fingap). It is noted that there is a good agreement. In
order to verify the validity of equations (3) and (4), we also
show in Fig. 7 results calculated using the more exact
analysis reported in [10]. It is concluded that equations (3)
and (4) can reasonably well approximate the field in struc-
tures with small fingap (d/b <0.2). This is however the case
in most practical applications.

Another useful application of equations (3) and (4) is in
determining the location of the plane of pure circularly polar-
ized magnetic field, which is needed in the design of finline
isolators {7].

CONCLUSIONS

Novel closed-form equations are reported for the field
distribution of TM modes in ridge waveguides as well as the
dominant mode in unilateral finlines. Numerical results are
presented which confirm the usefulness of these equations in
the calculation of the characteristic impedance in unilateral
finlines and in the analysis of E-plane ridge waveguide
discontinuities.
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Fig. 3 Normalized susceptance of an E-plane ridge waveguide
discontinuity: a=22.86mm, b=10.16mm, h=0.0, $=0.0,
[=11.43mm, d=2.79mm, w=1.7mm.
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Fig. 4 Magnitude of transmission coefficient of an E-plane ridge
waveguide discontinuity: a=22.86mm, b=10.16mm, h=0.0,
S$=1.0287mm, 1=10.40mm, d=4.14mm w=1.27Tmm.
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Fig. 5 Magnitude of transmission coefficient of a cascaded E-plane

ridge waveguide discontinuity: a=22.86mm, b=10.16mm,

h=0.0, S§=1.0287mm, [=10.40mm, , d=4.14mm

w=1.27Tmm, d, = dy=4.14mm, 1=12.192mm,
w1=w2=1524
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Fig. 6 A unilateral finline structure
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Fig. 7 Characteristic impedance versus frequency in unilateral fin-
lines: a=2b=4.7752mm, [,=0.127mm, |;=2.3876mm,
€,=2.2
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